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Three-dimensional and time-dependent numerical simulations of thermal convection 
are carried out for rotating layers in which the rotation vector is tilted from the 
vertical to represent various latitudes. The vertical component of the rotation vector 
produces narrow convection cells and a reduced heat flux. As this vertical component 
of the rotation vector diminishes in the lower latitudes, the vertical heat flux 
increases. The horizontal component of the rotation vector produces striking changes 
in the convective motions. It elongates the convection cells in a north-south 
direction. It also tends to turn upward motions to the west and downward motions 
to the east in a manner that produces a large-scale circulation. This circulation is 
directed to the west and towards the poles in the upper half of the layer and to the 
east and towards the equator in the bottom half. Since the layer is warmer on the 
bottom this circulation also carries an equatorward flux of heat. When the rotation 
vector is tilted from the vertical, angular momentum is always transported downwards 
and toward the equator. For rapidly rotating layers, the pressure field changes in a 
manner that tends to balance the Coriolis force on vertical motions. This results in 
an increase in the vertical heat flux as the rotation rate increases through a limited 
range of rotation rates. 

1. Introduction 
In  many geophysical and astrophysical fluid systems the circulations are dominated 

by the profound influence of rotation upon one form or another of thermal convection. 
For this reason the study of idealized types of convection with rotation has provided 
many fruitful insights into the dynamics of such complicated and disparate fluids as 
stellar and planetary atmospheres. Many properties of the general circulation of the 
earth’s atmosphere, for example, have been illuminated by the study of thermal 
convection in a rotating cylindrical annulus with an imposed horizontal temperature 
gradient. Dramatically different circulation patterns are found in different regions 
of parameter space for this relatively simple system. This fact provided one of the 
earliest and clearest demonstrations that the nature of the general circulation cannot 
be inferred from purely qualitative reasoning but instead depends strongly on the 
quantitative specifications of the system (cf. Lorenz 1967). 

The classical Rayleigh-Benard convection problem, in which the flow is driven by 
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an imposed vertical temperature gradient, has provided the basis for many studies 
of convection with rotation. Among the earliest theoretical investigations were linear 
stability analyses in which the horizontally unbounded plane parallel geomctry of 
the classical problem was retained. Uniform rotation about a vertical axis was the 
only added ingredient (cf. Veronis 1959; Chandrasekhar 1961 ; Weiss 1964; Heard & 
Veronis 1971). Subsequent linear stability theories were carried out for the onset of 
convection in rotating spheres (Roberts 1968 ; Busse 1 9 7 0 ~ )  and rotating spherical 
shells with radial temperature gradients (Busse 1970b; Heard 1972; Gilman 1975; 
Busse & Cuong 1977). 

Recently, linear stability analyses have been presented for plane parallel fluid 
layers in which the temperature gradient and rotation vector need not be parallel 
to gravity (Flasar & Gierasch 1978; Hathaway, Gilman & Toomre 1979; Hathaway, 
Toomre & Gilman 1980). These analyses have been one of the primary motivations 
for our nonlinear numerical simulations. They suggest that  a tilted rotation vector 
may give rise to a rich variety of convective structures. Among natural systems, the 
striking features of the atmospheric circulation of Jupiter and the solar differential 
rotation are among the most prominent examples of phenomena which may, a t  least 
in part, be understood in terms of the latitude-dependent effects of rotation on 
thermal convection. 

The finite-amplitude properties of convection with a vertical imposed temperature 
gradient and a vertical rotation vector have been explored in laboratory experiments 
(Koschmieder 1967 ; Rossby 1969 ; Krishnamurti 1971) and in nonlinear numerical 
simulations. Veronis (1968) and Somerville (1971 ) carried out two-dimensional 
numerical simulations, while Clever & Busse (1979) and Busse & Heikes (1980) have 
explored the stability of the finite-amplitude solutions, a subject pioneered by 
Kuppers & Lortz (1969) and Kuppers (1970). Three-dimensional numerical simula- 
tions have been reported by Somerville & Lipps (1973) and nonlinear solutions of 
single-mode equations have been studied by Van der Borght & Murphy (1973) and 
by Baker & Spiegel (1975). 

The effects of a tilted rotation vector are difficult to explore in laboratory 
experiments, and so the role of numerical simulation in this case is an especially 
important one. Fortunately, recent developments in numerical methods, together 
with advances in computer power, have made fully three-dimensional and time- 
dependent simulations of thermal convection much more feasible than was the case 
only a few years ago. We have taken advantage of this technological progress to carry 
out exploratory simulations of several cases of convection in which the imposed 
temperature gradient is garallel to gravity but the rotation vector need not be. The 
numerical procedure we use is an efficient implicit finite-difference technique described 
by Somerville & Gal-Chen (1979). Used on the Cray-l computer at the National Centcr 
for Atmospheric Research (NCAR), this method typically requires about $ h of 
computer time to simulate the evolution of'one case to a quasi-equilibrium state. We 
have found that computer-generated motion pictures are a virtually indispensable 
aid to the analysis of our four-dimensional numerical solutions. The availability a t  
NCAR of the necessary machinery, software, and expertise in computer graphics has 
been part of the technological resources that have made our research possible. 

In  this study we have carried out four numerical integrations in which the effects 
of varying the rotation vector are illustrated. Although our four cases are by no means 
an adequate exploration of parameter space, they do provide an intriguing sample 
of the multiplicity of the possible modes of convection. Our results answer some 
questions, raise others, and suggest several extensions and applications for future 
study. One application, to solar rotation effects in supergranules, has already been 
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FIQURE 1 .  The geometry used in the model. A plane parallel layer of fluid is positioned tangent 
to a sphere at some latitude ( I .  The rotation vector is then tilted from the vertical with a northward 
component as well as a vertical component. 

investigated (Hathaway 1982). We have chosen a highly idealized system for study 
and have modelled it using the Bousinesq equations. Our representation of the 
influence of rotation is quite general, in that  we have retained all of the Coriolis terms 
rather than making any a priori assumptions concerning their relative magnitudes. 
Thus we have approached the problem as one in pure fluid dynamics, but we expect 
our results to be applicable to understanding convection with rotation in a wide 
variety of stellar and planetary contexts. 

2. The model 
We use a three-dimensional and time-dependent numerical model to simulate the 

convective flow within a rotating plane parallel layer. The geometry employed is 
shown in figure 1 .  The layer of fluid is positioned tangent to the sphere a t  some 
latitude (i . We neglect the effects of curvature but include both the vertical and the 
horizontal components of the rotation vector to simulate various latitudes. The 
Cartesian coordinate system we use has x increasing towards the east, y increasing 
towards the north, and z increasing upwards, antiparallel to gravity. We employ the 
Boussinesq approximation, in which the fluid is assumed to be of constant density 
except for small variations (due to  temperature), which couple with gravity to 
produce the buoyant force that drives the motions. 

A grid-point model is used to represent the fluid velocity, temperature and pressure 
at  discrete time and space intervals. The diffusivities K and Y of heat and momentum 
are taken to be constants that are independent of position or temperature. The full 
set of equations are then the equation of mass continuity 

au av aw 
ax a y  aZ -+ -+ - = 0, 



78 D. H .  Huthuway and R. G. J .  Somerville 

the three components of the momentum equation 

au au au au 
at ax ay az P ax 

av av av av 13%) 
at ax ay az Pay 

- + u- +v- + w- -2Q sinq5v+2R cos q5w = - -- + V v z U ,  

- +u- +v- + W -  + 2 0  sin& = - -- + VV2v, 

aw aw aw aw 1 ap 
at ax ay az P az  
- +u- +w- + W- -2Q COS#U 7 - -- - ( 1  - a T ) g +  v V ~ W ,  (2.4) 

and the heat equation 
a!!" dT d T  aT 
- +u- +v- + w- = KVT, 
at ax ay az 

where (u, v, w) is the fluid velocity in the (x, y, 2)-direction, p is the pressure, T is the 
temperature, p is the fluid density, Q is the rotation frequency, a is the volumetric 
coefficient of thermal expansion and g is the gravitational acceleration. 

It is useful to rewrite these equations in a dimensionless form with the basic 
background distributions of pressure, temperature, and density removed. On taking 
the depth D of the layer as the unit of length, the viscous diffusion time D2/v  as the 
unit of time, and the temperature diffcrence AT across the layer as the unit of tempera- 
ture, (2.1 )-(2.5) becorne 

au av aw 
ax ay az -+-+-=o,  

au au au au aP 
at ax ay d z  ax - +u- +v- +w- - Taisinq5v+ Ta: cosq5w = - - + V ~ U ,  

where 

av av av av aP 
at ax ay az a Y  
- + u- +v- + w- + Taisinq5u = - - +V2v,  

aw aw aw aw dp Ra 
at ax ay az Pr 
- +u- +v- +w- - T ~ c o s ~ ~ u  = - - + -T+V2w, (2.9) 

dT dT dT aT 1 
-+u-+v-++w-=-v 2T, at ax ay az pr 

4R2 D4 
Ta = ~ 

V 2  

olgATD3 
is the Taylor number, 

Ra = 
KV 

V I+ == - 
K 

is the R,ayleigh number, and 

(2.10) 

(2.1 1 )  

(2.12) 

(2.13) 

is the Prandtl number. 
These equations (2.6)-(2.10) are marched forward in time using an extension of a 

method first suggested by Chorin (1968) and described in more detail by Somerville 
& Gal-Chen (1979). The time differencing is implicit, to  allow larger time steps, and 
the pressure is calculated using an iterative technique. We use rigid (non-slip) top 
and bottom boundaries and periodic side boundaries to  represent an infinite plane 
parallel layer. The computational domain measures 1 unit in the z-direction by 6.0 
units in the x-direction by 4.9 units in the y-direction, and involves 38400 grid points 
in an array with 48 points in x, 32 points in y, and 25 points in 2 .  One time step takes 
2 4  s on the CRAY-1 computer a t  NCAR, depending upon how many iterations are 
required to obtain the pressure. 
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FIQURE 2. The stability boundaries for convective rolls a t  15' latitude. The layer is unstable for 
Rayleigh numbers above these curves. Rolls oriented easkwest (E-W) require larger Rayleigh 
numbers than do north-south (N-S) rolls. The dashed line represents the stability boundary for 
convective rolls a t  90° latitude. The numbered points refer to the cases described in the text. 

We integrated four cases for this study. The Prandtl number was taken to be unity 
in all of them since the computer code runs most efficiently for this value. We also 
set Ra = lo4 in all four runs so that the thermal forcing remained the same, thereby 
allowing a straightforward analysis of the effects of rotation and the tilted rotation 
vector. 

For the first run we set T a  = 0 to provide a non-rotating reference state with which 
the rotating cases could be compared. This calculation was started from a static state 
in which small temperature perturbations were superimposed on a horizontally 
uniform temperature field that decreased linearly with height. Each of the following 
three cases used the end of the previous case for its initial condition. I n  the second 
run we took T a  = lo4 and 9 = 90' to give a moderately rotating case with a vertical 
rotation vector. For the third cme we again took T a  = lo4, but tilted the rotation 
vector to represent a low latitude with CJ = 15'. For the fourth case we increased 7'a 
to lo5 while keeping p = 15'. This produced a rapidly rotating case in which the effects 
of rotation dominate the flow. 

The parameter values associated with these four cases are represented by the 
numbered points in figure 2. In  this figure the stability boundaries for roll-like 
disturbances oriented north-south (N-S) or east-west (E-W) at a latitude of 15' are 
represented by the solid lines. The stability boundary for 90' latitude is represented 
by the dashed line. The location of these boundaries was determined using a linear 
stability analysis like that described in Hathaway et al. (1980). For parameter values 
above these lines the layers are unstable, and convective motions will carry much 
of the heat flux. At 90° latitude there is no unique horizontal direction, so a single 
curve represents all possible orientations for Convective rolls. At 1 5 O  the horizontal 
component of the rotation vector provides a unique direction, and a number of 
stability boundaries can be drawn depending upon the roll orientation. The separation 
of the curves in figure 2 shows that rolls oriented north-sout>h are unstable for much 
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FIGURE 3. The Nusselt numbers Nu plotted as functions of time t for the four cases studied. 

smaller temperature gradients than those required to make the east-west rolls 
unstable. All convective roll orientations are unstable for the first three cases, but 
the rolls oriented east-west are stable in the fourth case. In  $3  we will analyse the 
resulting motions for these four cases to determine the effects of the tilted rotation 
vector on the flow. 

3. The results 
The transport properties of the convective motions are of major importance for 

many geophysical and astrophysical systems. The rate a t  which heat can be 
transported across the layer determines the vertical stratification while a horizontal 
heat transport can limit or induce horizontal variations in the temperature field. 
Vertical and horizontal transports of momentum can also be produced and these 
transports can induce large-scale flows that influence the basic structure of the system. 
In  this section we analyse the velocity, temperature and pressure fields to determine 
these transport properties and how they depend upon the tilted rotation vector. 

3.1. Heatflux 
A variety of measures can be used to characterize the convective flows. One of the 
most important of these is the heat flux that is transported across the layer. I n  
dimensionless units this flux is given by the Nusselt number 

N u = l + ( w T ) ,  (3.1) 

which is the ratio of the total heat flux to that which would be carried by conduction 
alone (here the angle brackets represent a volume average). The Nusselt numbers for 
the four cases studied here are plotted in figure 3 as functions of time. 

The heat flux for the first case is shown in figure 3(a ) .  Since this case was started 
from small random temperature perturbations there is a rather lengthy initial period 
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during which the fluid is almost motionless. At about t = 0.2 the most unstable mode 
of convection becomes energetic enough to become noticeable. The initial exponential 
rise is damped out as changes appear in the background temperature distribution and 
in the form of the convection itself. The heat flux then asymptotes a t  a Nusselt 
number of about 2.4 and a dimensionless r.m.s. fluid velocity of about 17. 

The time dependence of the heat flux for the second case is shown in figure 3 ( b ) .  
After an initial rapid decay the flux rises slowly to a fairly steady level with N u  = 1-75. 
The cinematic animation ofthe flow shows that the initial decay is due to  the damping 
of the rather large convective cells initially present from the previous run. As these 
modes decay new ones grow that have smaller horizontal dimensions. Typical fluid 
velocities are about 10 and they carry a correspondingly smaller heat flux. 

The heat flux for the third case is shown in figure 3 ( c ) .  I n  this case the flux oscillates 
while rising slightly to a value of about 2.0. Fluid velocities of about 14 give turnover 
times that are comparable to the rotation period, and both timescales are similar to 
the period of the heat-flux oscillations. This coincidence tends to make the source 
of these oscillations uncertain. Since the rotation rate for this case is the same as for 
the second case, the larger heat flux must be associated with the tilt of the rotation 
vector. The linear stability analyses show in fact that  only the vertical component 
of the rotation vector figures in the stability analysis for convective rolls oriented 
north-south. Thus this low-latitude case is more unstable and consequently gives 
larger velocities and heat flux. 

The time history of the heat flux for the fourth case is shown in figure 3 (d) .  After an 
initial drop like that in the second case the heat flux rises again and becomes almost 
steady with N u  = 2.2. In  spite of the more rapid rotation rate this flux exceeds that 
obtained in the third case and approaches the value of the heat flux for the non-rotating 
case. Typical fluid velocities are about 15 for this case. The reason for this increased 
heat flux is due to the adjustments in the velocity field caused by rotation and will 
be discussed in $3.2. 

Horizontal heat fluxes are produced in the third and fourth cases even though 
large-scale horizontal temperature gradients are absent. A heat flux in the east-west 
direction returns on itself and can have no divergence and cannot therefore introduce 
any heating or cooling to different parts of the system. A north-south heat flux can, 
and in fact must, vary with latitude, and is thereby capable of heating or cooling 
different latitude bands. We find that an equatorward flux of heat is produced in both 
the third and fourth cases. For the third case this flux is about 18% of the total 
vertical heat flux while the flux in the fourth case is only about 3% of the vertical 
flux. This latitudinal flux must vanish at the poles due to a lack of any preferred 
direction there. It must also vanish a t  the equator since we expect the flows to be 
symmetric about the equator. Thus this equatorward heat flux must product a net 
heating of the equatorial regions and a cooling of the polar regions. The means by 
which this heat flux is produced will be discussed in 93.3. 

3.2. Flow structure 
The cinematic animation of the velocity and temperature fields was instrumental in 
understanding the evolution of the flow patterns. For the first case the fluid remains 
static until t = 0.2, a t  which time the motions are discernible and rapidly accelerating. 
The horizontal scale of the motions at  this time is comparable to the depth of the 
layer and agrees fairly well with the wavelength of the most unstable mode from 
linear theory. As the flow evolves adjacent cells coalesce to form larger ones until the 
flow becomes fairly steady with two major cells within the computational domain. 
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The flow within these cells is fairly isotropic with nearly equal amounts of kinetic 
energy in the vertical and horizontal directions. This is in contrast to the most 
unstable mode from linear theory which has more kinetic energy in the vertical 
direction. 

The final flow field for this first case is shown in figure 4 (plate 1 ) .  Here a 
three-dimensional perspective view of particle trajectories is shown. The overturning 
motions can be seen in the two vertical planes. On the horizontal upper surface the 
particles spread out from the updrafts (vacant regions) and converge on the 
downdrafts (filled regions). The horizontal size of these convective elements is 
considerably larger than that given by the most unstable mode. The cells may in fact 
be too large in that the size of the computational domain may very well limit any 
further evolution. W- chose not to increase the size of the domain, however, because 
the smaller cells expected in later calculations would then be poorly resolved. 

The final flow field for the second case is shown in figure 5 (plate 1 )  using the same 
perspective view used in figure 4. The smaller size of the convective elements is 
immediately evident as is the turning effect of the Coriolis forces. On the horizontal 
surface the outflows from the updraft are turned clockwise (anticyclonically) while 
the convergent flows near the downdrafts are turned counterclockwise (cyclonically). 
This sense of turning switches near the bottom of the layer, as was pointed out by 
Veronis (1959), thereby giving a twisting motion to fluid columns. Since these curved 
trajectories and small cell sizes are more susceptible to dissipative effects the resultant 
motions are much slower. The narrow cells and moderate twisting due to Coriolis 
forces produce an anisotropic flow field with more kinetic energy in the vertical 
direction. 

When the rotation vector is tilted from the vertical in the third case the flow field 
changes considerably. The final flow field for this case is shown in figure 6 (plate 2). 
Here the tilted rotation vector plays an important role. The convective elements tend 
to be elongated in a north-south direction as shown by the fairly prominent rows 
of convergent and divergent flows. There is also a strong correlation between upward 
motions and westward motions. This correlation is evident in the trajectories plotted 
on the southern vertical plane and is measured to be 

The source of these tilted trajeetories is easily attributed to  the presence of the 
horizontal component of the rotation vector. Upward-moving elements tend to 
conserve their angular momentum and move toward the west under the influence of 
the Coriolis forces. This general behaviour is also predicted by linear theory. 

Figure 7 (plate 2) shows the particle trajectories for the fourth case. Here the rapid 
rotation of the layer produces a regular array of convective rolls with north-south 
axes. Although the Coriolis forces are much stronger here than in the third case the 
tilting of the vertical flow is no longer evident. We find in fact that 

(3.3) 

which implies that the fluid moves nearly vertically upward. This explains the larger 
heat flux for this case. By moving vertically upward, instead of a t  some angle as in 
the third case, the motions are more efficient in transporting heat across the layer. 
These vertically moving fluid elements do not conserve their angular momentum. 
Cowling (1951) shows that non-conservation of angular momentum by fluid parcels 
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could occur for non-axisymmetric modes. For such modes of convection the pressure 
field shifts to balance the Coriolis forces due to the horizontal component of the 
rotation vector. 

Although, in this case, the Coriolis forces due to the horizontal component of R 
are largely balanced by pressure gradients, those forces due to the vertical component 
of R are unbalanced, as is seen in the flow field in the horizontal plane. Here fluid 
elements are turned to the right as they move from updraughts to downdraughts, 
so that fluid moving eastward from an updraught gets turned to the south. This effect 
is particularly evident here because of the regularity of the convection rolls. We find 

for this case, while for the third case we find 

(3.4) 

The larger value of this correlation for case 4 is due to the combined effects of the 
vertical component of R turning the horizontal velocities and the horizontal 
component of 52 producing a series of north-south rolls instead of horizontally 
isotropic cells. 

3.3. Mean Jlows 

The tilted rotation vector can induce mean flows by producing correlations between 
the various velocity components. These velocity correlations can be thought of as 
momentum fluxes with (uw) and (uv) the vcrtical and latitudinal fluxes of zonal 
(eastward) momentum, and (VW) the vertical flux of latitudinal (northward) 
momentum. A convergence of these fluxes in any region will then deposit momentum 
there in a manner that produces a mean flow. 

The source of any mean flow can be determined by taking the horizontal average 
of the momentum equations (2.7) and (2.8), which gives 

aa - = --uw+Taisin$v+--, a -  a2u 
at az a Z 2  

- au =--vw-Taisin$a+--, a-  a2a 

at aZ a Z 2  

where the overbar represents horizontally averaged quantities. The first term on the 
right-hand side of these equations represents the divergence of the vertical flux of 
zonal and latitudinal momentum. Since (uw) is negative for these cases and must 
vanish a t  the top and bottom boundaries, there must be a divergence of zonal 
momentum from the upper regions of the layer and a convergence in the lower regions. 
We also find that (vw> is negative in the third and fourth cases, with 

in case 3, and 

(3.9) 

in case 4. Thus latitudinal momentum is also extracted from the upper region and 
deposited in the lower region. 

While the divergence of these momentum fluxes provides the initial driving for the 
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FIGURE 8. The mean flows produced in cases 3 and 4. The induced flow is t o  the west and north 
in the upper half of the layer and t o  the east and south in the lower half. These flows are much 
weaker in the rapidly rotating case because the pressure field balances the Coriolis forces to  produce 
weak momentum fluxes. 

mean flows, the Coriolis forces will come into play once the mean flows are established. 
These forces are represented by the second term on the right-hand sides of (3.6) and 
(3.7). The momentum fluxes for these cases tend to  produce a flow that is to the east 
and north along the bottom and to  the west and south along the top. The Coriolis 
force on the northward and southward flows tends to reinforce the east-west flows. 
However, the Coriolis force in (3.7) on the eastward and westward flows tends to 
oppose the north-south flows. The final term on the right-hand sides of (3.6) and (3.7) 
represents the viscous diffusion of the mean flow, and as such limits the amplitude 
of the resultant flows. 

The final mean flows produced in the third and fourth cases are shown in figure 8. 
As expected, the flow is to the west along the top and to the east along the bottom. 
The north-south flow, however, is dominated by the effect of the Coriolis forces on 
the zonal flow, which produces a northward flow along the top and a southward flow 
along the bottom. 

These mean flows drive the latitudinal heat flux. This flux is given by the 
correlation of latitudinal flows with temperature. While the convective motions can 
produce correlations between v and the temperature perturbations we find that the 
primary source of the equatorward heat flux is the advection of the mean temperature 
field by the mean flow. Since the layer is warmer on the bottom the equatorward flow 
there carries heat toward the equator. 

Since the momentum fluxes are weaker in case 4 the resultant mean flow is slower 
than that produced in case 3. The source of the smaller values of (uw> in the fourth 
case can be seen in the pressure field. An equation for the pressure can be formed 
by taking the divergence of the momentum equations (2.7)-(2.9). This gives 

where 

au aw 
7=,,-,, 

is the vertical vorticity, 

(3.10) 

(3.11) 

(3.12) 

is the northward vorticity, and NL represents the nonlinear terms. The first term on 
the right-hand side of (3.10) represents the hydrostatic contribution to the pressure 
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Rapidly rotating case 
Ra = lo4 Pr = 1.0 
TQ= 105 Ip= 15" 
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Trajectories 
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FIGURE 9. Trajectories and pressure contours for case 4. Here the pressure contribution ( H 3 ,  
due to the horizontal component of the rotation vector dominates the contributions due to 
hydrostatics ( H , ,  L,) and the vertical component of the rotation vector ( H z ,  Lz) .  The resulting 
pressure gradients balance the Coriolis forces on the vertical flows to produce upward motions which 
are nearly vertical. 

from temperature-produced density variations. This term produces the high-pressure 
regions a t  the top of updraughts and at  the bottom of downdraughts. These high- 
pressure regions drive the horizontally divergent flows near the top and bottom, while 
the low-pressure regions drive the horizontally convergent flows. The second term 
on the right-hand side of (3.10) represents a contribution due to the vertical 
component of R. This term tends to enhance the hydrostatic contribution by 
producing high pressure in the horizontally divergent regions where the vertical 
vorticity is negative (anticyclonic) and low pressure in the convergent regions where 
the vertical vorticity is positive (cyclonic). The third term on the right-hand side of 
(3.10) represents a contribution due to the horizontal component of R. It is this term 
that helps to balance the Coriolis forces acting on the vertical flows. This term 
produces high pressure centred on regions of negative northward vorticity and low 
pressure in regions of positive northward vorticity. The positions of these pressure 
contributions are shown in figure 9 for the flow field produced in the fourth case. By 
producing high-pressure regions to the west of the updraughts the pressure 
contribution due to the horizontal component of R can balance the westward Coriolis 
force on the upward motions. This is another general result that carries over from 
linear theory and was first explained by Cowling (1951). For case 3 this contribution 
is insufficient for balancing the Coriolis force, and the fluid moves westward as i t  
moves upward. For case 4 this contribution is much stronger, and the pressure 
gradient nearly balances the Coriolis force so that the fluid moves nearly vertically 
upward. 

For plane parallel layers both the linear calculations (Flasar & Gierasch 1978; 
Hathaway et al. 1979, 1980) and our present nonlinear calculations indicate that the 
upward flux of zonal momentum is always less than or equal to zero. Yet both the 
linear spherical-shell calculations (Gilman 1975 ; Busse & Cuong 1977) and Gilman's 
(1977) nonlinear calculations show that this flux can become positive for thick 
spherical shells. The source of this positive upward flux of angular momentum must 
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be attributed to non-local effects in thick shells. The pressure field produced by the 
Coriolis forces does have an eastward ti l t  with height as seen in figure 9. For the local 
analysis we do with plane parallel layers this tilt can just balance the opposite tilt in 
the fluid motions produced by the Coriolis forces. However, for a thick spherical shell 
the strength of the Coriolis force on the vertical motions diminishes with increasing 
latitude. This must produce a situation in which the pressure field then dominates thc 
flow and forces upward-moving fluid to move eastward. Gilman’s (1979) calcula- 
tions for spherical shells of different depths indicate that this upward momcn- 
tum flux occurs primarily in the equatorial region, where convective rolls aligned 
with the rotation axis extend across the equator from one hemisphere to the other. 

In  addition to the vertical fluxes of momentum a strong latitudinal flux of zonal 
momentum, given by (uv), is produced by the horizonal component of the rotation 
vector. This flux vanishes a t  the poles and a t  the equator and is directed toward the 
equator in between. Thus there should be a divergence of zonal momentum from the 
poles and a convergence a t  the equator. Of course we cannot determine the magnitude 
of the flow produced by this flux from the local analysis we do here. We can, however, 
predict that  this flux should produce rapidly rotating equators like those observed 
on the sun and on Jupiter and Saturn. The spherical-shell studies of Busse (1970b), 
Gilman (1975) and Busse & Cuong (1977) also suggest that this flux is of major 
importance in producing large-scale flows in rotating systems. Gilman’s (1977) 
nonlinear calculations for rotating spherical shells show that for rapidly rotating cases 
this latitudinal flux overpowers the vertical flux in producing differential rotation, 
but under those conditions the Coriolis forces are also important. 

4. Conclusions 
We find that rotation produces striking changes in the convective motions. The 

vertical component of the rotation vector tends to inhibit the motions and produce 
much smaller Convection cells, with substantial turning of the fluid flow. The 
horizontal component of the rotation vector introduces a preference for cel!j. 
elongated along the direction of the rotation axis and produces dynamical changes, 
which drive mean flows and horizontal heat and momentum fluxes. 

Both components of the rotation vector influence the heat transport. The vertical 
heat, flux is smaller in the high latitudes, where the vertical component of the rotation 
vector is largest. The mean flows produced by the horizontal component of the 
rotation vector carry an equatorward heat flux. This latitudinal heat flux should heat 
the equatorial regions and produce a temperature difference between the equator and 
the poles. This latitudinal temperature gradient may very well alter the mean flows, 
but the periodic boundary conditions in our model prohibit the formation of any 
horizontal temperature gradients. 

The heat transports also depend upon the magnitude of the rotation rate, but in 
a complicated manner. When the rotation vector is vertical the vertical heat flux can 
increase slightly and then decrease as the rotation rate is increased. Rossby (1969) 
found this effect in his laboratory experiments with water. Somerville (1971) and 
Somerville & Lipps (1973) showed that this non-monotonic dependence of the heat 
flux upon the rotation rate is due to variations in the horizontal structure of the 
convection cells. I n  our numerical experiments with the tilted rotation vector we also 
find an increase in the heat flux with increasing rotation rate. Here, however, this 
increase is due to changes in the vertical structure of the convection cells. For 
moderate rotation rates the fluid moves upwards and towards the west along a tilted 
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trajectory. For more rapid rotation rates the pressure field balances the Coriolis forces 
and produces trajectories that are nearly vertical and more efficient a t  transporting 
heat across the layer. The horizontal heat flux also has a non-monotonic dependence 
upon the rotation rate. The mean flows that carry this heat flux first increase as the 
rotation rate increases and then decrease with further increases as the pressure field 
balances the Coriolis forces. 

The horizontal component of the rotation vector is responsible for the fluxes of 
angular momentum within the system. Downward motions are turned to the east, 
thereby producing a downward flux of angular momentum. Although this flux 
decreases when the pressure field balances the Coriolis forces i t  never becomes an 
upward flux for these plane parallel layers. Yet the calculations of Gilman (1975,1977) 
and Busse & Cuong (1977) shows this flux being directed upwards in the equatorial 
regions of spherical shells. This suggests that  our local plane parallel analysis should 
only be applied poleward of those latitudes. We note that observations of solarp-mode 
oscillations (Deubner, Ulrich & Rhodes 1979), the rotation rate of supergranules 
(Duvall 1980), and solar dynamo activity all indicate that the solar rotation rate 
increases inward, a t  least across the shallow surface layers where our plane parallel 
analysis is most appropriate. 

The equatorward flux of angular momentum is present in both the plane parallel 
and spherical geometries. The horizontal component of the rotation vector favours 
convection cells that are elongated in a north-south direction. I n  the absence of the 
vertical component of the rotation vector such cells produce horizontal flows that 
are directed to the east and to the west. The vertical component of i2 turns these 
flows to the right so that eastward flows are also equatorward flows and westward 
flows are also poleward flows. This equatorward flux of angular momentum produces 
faster rotation rates in the equatorial regions, as is observed on the Sun and on the 
giant planets. 

Although the four cases we study here provide a meagre sampling of the parameters 
and are dominated by dissipation, they do demonstrate a number of important effects 
due to the tilted rotation vector. These effects may be instrumental in understanding 
the circulations that arise in a variety of geophysical and astrophysical systems. A 
spherical-shell model may be required to answer some questions about the final 
distribution of heat and angular momentum within such systems. However, our plane 
parallel model allows us to examine the detailed structure of the convective motions 
while producing most of the heat and momentum fluxes found to be important in 
the full spherical geometry. 
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FIGURE 4. Perspective view of the velocity and temperature field for case 1. Colour is used to  
represent temperature, with yellow being the hottest and red the coldest. Particle trajectories are 
shown for particles that  are confined t o  each of the three surfaces shown. Overturning motions are 
seen in the two vertical surfaces with warm updrafts and cool downdrafts. The horizontal upper 
surface shows the outflows from the updrafts and the convergence in the downdrafts. 

FIGURE 5. Velocity and temperature field for case 2. Here the cells are small compared with the 
depth of the layer. Cyclones are formed in the cool downdrafts on the  upper surface while 
anticyclones are formed in the updrafts. 
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FIGURE 6. Velocity and temperature field for case 3. The upper surface shows the elongated cells 
oriented north to  south as well as a predominately westward flow in the warm updrafts. The 
southern vertical surface also shows tha t  the upward motions are correlated with westward motions 
owing to  the influence of the tilted rotation vector. 

FIGURE 7. Velocity and temperature field for case 4. The tilted rotation vector constrains the flow 
rigidly to a series of north-south rolls. The vertical flows have only a slight westward tilt owing 
t o  the nearly perfect balance between the Coriolis force and pressure gradients. The horizontal flows 
are strongly correlated with eastward-moving fluid also moving towards the equator. 
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